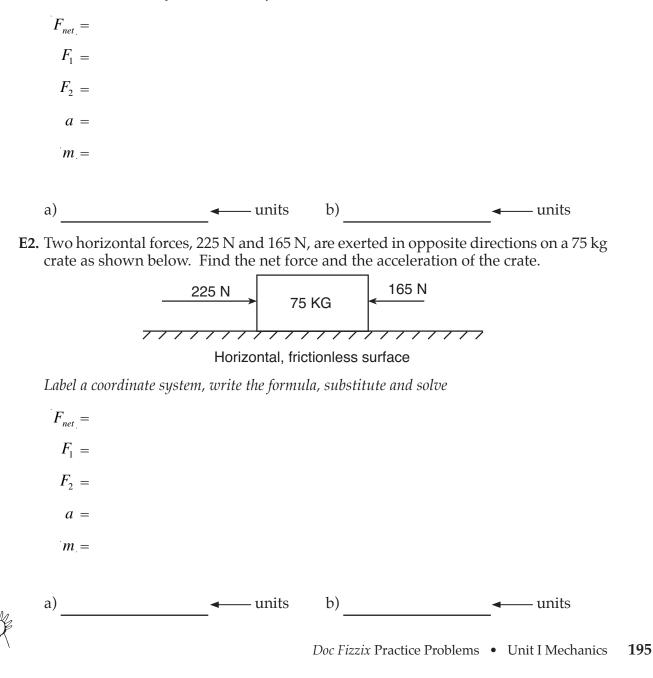

Example Problems

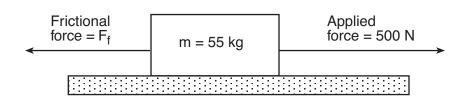

5.3 Net Force

E1. Two horizontal forces, 225 N and 165 N, are exerted in the same direction on a 75 kg crate as shown below. Find the net force and the acceleration of the crate.

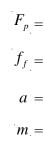
Horizontal, frictionless surface

Name	Period _	Date	

E3. A monkey and gorilla are playing tug-of-war with an old tire. The monkey pulls towards the left with a force of -400 N and the gorilla pulls towards the right with a force of 425 N. If the tire has a mass of 35 kg, calculate the net force and the acceleration of the tire.


Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

 $F_1 =$ $F_2 =$ a = m =

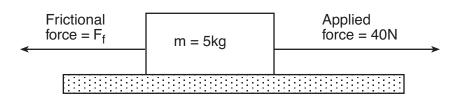

a) _____ units b) _____ units

E4. A 55 kg crate is pulled across the floor with a force of 500 N towards the right. If the acceleration of the crate is 7.5 m/s^2 , calculate the magnitude of the frictional force.

Acceleration = $7.5 \text{ m/s}^2 \longrightarrow$

Label a coordinate system, write the formula, substitute and solve

a)

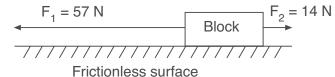


----- units

Newton's Second Law Chapter 5

E5. A 5 kg crate is pushed across the floor with a force of 40 N towards the right. If the acceleration of the crate is 6.0 m/s^2 , calculate the magnitude of the frictional force.

Acceleration = $6.0 \text{ m/s}^2 \longrightarrow$



Label a coordinate system, write the formula, substitute and solve

 $F_p \equiv$ $f_f =$ a =m =

a) - units

E6. Two forces, F₁ and F₂, are applied in opposite directions to a block on a frictionless, horizontal surface as shown below. If the magnitude of the block's acceleration is 4.3 m/s^2 , calculate the mass of the block.

Label a coordinate system, write the formula, substitute and solve

$$F_1 =$$

 $F_2 =$
 $a =$

m =

a)

- units

Name	Period	Da	ate _	

E7. A 225 kg crate is pushed along the floor by a monkey with a force of 710 N. If the coefficient of friction is 0.20 N/N, calculate the size of the frictional force and the acceleration of the crate.

Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

 $F_p =$ $f_f =$ a =m =

a) _____ units b) _____ units

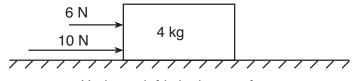
E8. A 50 kg crate, initially at rest, is pushed with a constant force of 280 N. If after 2 seconds the crate is traveling at 7 m/s, calculate the force of friction acting on the crate's motion.

Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

a =

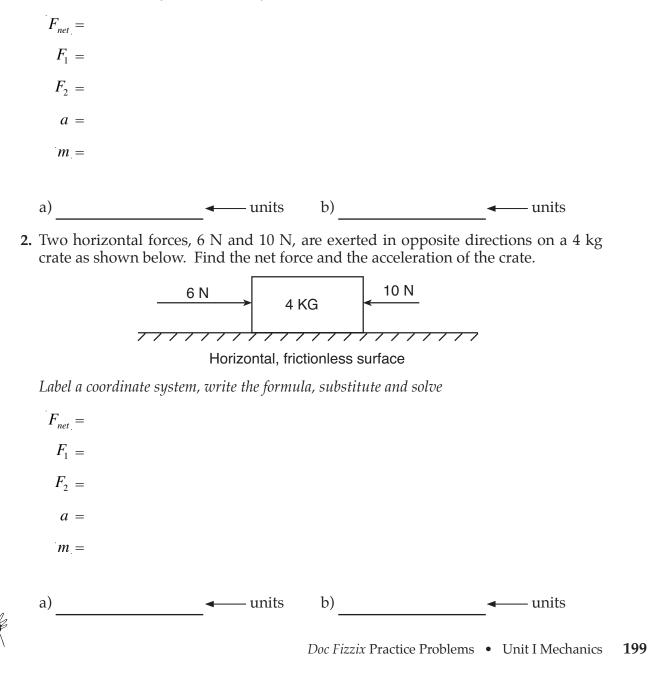
 $m_{\cdot} =$

a)

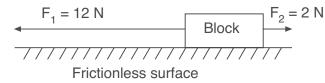

2016 Doc Fizzix Products, Saving the world with his knowledge of science

0

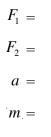
Student Problems


5.3 Net Force

1. Two horizontal forces, 6 N and 10 N, are exerted in the same direction on a 74 kg crate as shown below. Find the net force and the acceleration of the crate.

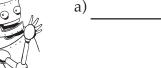


Horizontal, frictionless surface


Label a coordinate system, write the formula, substitute and solve

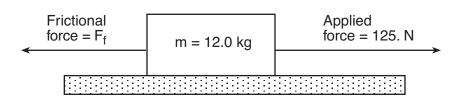
3. Two forces, F_1 and F_2 , are applied in opposite directions to a block on a frictionless surface as shown below. If the magnitude of the block's acceleration is 2.0 m/s², calculate the mass of the block.

Label a coordinate system, write the formula, substitute and solve

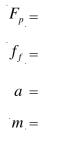

4. Two forces are applied to a block on a frictionless, horizontal surface. A -65 N force is applied to one side of the block and a 71 N force is applied to the other side. If the magnitude of the block's acceleration is 1.6 m/s^2 , calculate the mass of the block.

Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

- $F_1 =$
- $F_2 =$
- a =
- m =



0



5. A 12 kg crate is pushed across the floor with a force of 125 N towards the right. If the acceleration of the crate is 8.0 m/s^2 , calculate the magnitude of the frictional force.

Acceleration = $8.0 \text{ m/s}^2 \longrightarrow$

Label a coordinate system, write the formula, substitute and solve

a) — units

6. A 100 kg crate is pushed across the floor by a force of 400 N causing the crate to accelerates at a rate of $2.5 8 \text{ m/s}^2$, calculate the magnitude of the frictional force?

Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

a =

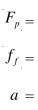
m =

a)

→ units

Newton's Second Law Chapter 5

7. A 55 kg crate is pushed horizontally with a force of 220 N. If the coefficient of friction is 0.35, calculate the size of the frictional force and the acceleration of the crate.


Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

- $F_p \equiv$ $f_f =$ a =m =
- 8. You have run out of gas on the highway so you and a buddy push your 2,000 kg car to the nearest gas station. If both you and your buddy each apply a force of 800 N (1,600 N total) and the coefficient of friction in the bearings of the car is 0.08 N/N, calculate the size of the frictional force and the acceleration of the car.

→ units

b)

Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve

a)

m =

units