\qquad
\qquad
\qquad

Chapter 1 Linear Motion

Example Problems

1.8 Relative Motion

E1. A monkey is riding on a bus that is moving at $8.5 \mathrm{~m} / \mathrm{s}$ relative to the street. While the bus is in motion the monkey walk towards the front of the bus at a speed of $1.3 \mathrm{~m} / \mathrm{s}$ relative to the bus. Calculate the speed of the monkey relative to the street.

Draw a picture
Show your work
a) \longleftarrow units

E2. A monkey is riding on a bus that is moving at $8.5 \mathrm{~m} / \mathrm{s}$ relative to the street. While the bus is in motion the monkey walk towards the back of the bus at a speed of $1.3 \mathrm{~m} / \mathrm{s}$ relative to the bus. Calculate the speed of the monkey relative to the street.

Draw a picture
Show your work

E3. A monkey swims at $2.4 \mathrm{~m} / \mathrm{s}$ relative to the water. If the current flows at $1.2 \mathrm{~m} / \mathrm{s}$. Calculate how long will it take the monkey to swim 100 m both up and down stream.

Draw a picture
Show your work
a) \qquad b)

\qquad
\qquad
\qquad

Chapter 1 Linear Motion

E4. Car A and car B are traveling in opposite directions towards each other. Car A is traveling at $27 \mathrm{~m} / \mathrm{s}$ and car \mathbf{B} traveling at $51 \mathrm{~m} / \mathrm{s}$ in the opposite direction. Calculate how fast car \mathbf{A} appear to be moving to an observer in car \mathbf{B} and how fast does car \mathbf{B} appear to be moving to an observer in car \mathbf{A}.
a)

b) \qquad

E5. From the last problem, if at time $=0$ seconds the two cars are 1800 meters apart, calculate how long it take before the two cars pass each other.

Draw a picture
Show your work

E6. A boat is traveling north. The people on the boat measure the water to be moving past the boat at a velocity of $5 \mathrm{~m} / \mathrm{s}$ towards the south. A stationary observer on the shore measures the velocity of the boat to be moving $2 \mathrm{~m} / \mathrm{s}$ north. What is the actual velocity of the water as seen from the shore in meters per second?

Draw a picture
Show your work
a) \qquad
\qquad
\qquad
\qquad

Chapter 1 Linear Motion

Student Problems

1.8 Relative Motion

1. A monkey is flying to New York for her big Broadway debut. If the plane heads out of Los Angeles with a velocity of $220 \mathrm{~m} / \mathrm{s}$, and encounters a tail wind blowing from behind the plane at $45 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of the plane relative to the ground.

Draw a picture
Show your work
a) \qquad
2. A train is travels at a speed of $45.0 \mathrm{~m} / \mathrm{s}$ relative to the tracks. A monkey shoots a Nerf dart at a gorilla sitting behind him (towards the back of the bus). The dart leaves the gun traveling $23 \mathrm{~m} / \mathrm{s}$ relative to the train. Calculate the velocity of the dart relative to the tracks.

Draw a picture

Show your work
a) \longleftarrow units
3. A monkey is flying an airplane at a speed of $375 \mathrm{~m} / \mathrm{s}$ relative to the ground. The monkey fires a missile. The missile flies forward at a speed of $782 \mathrm{~m} / \mathrm{s}$ relative to the plane. Calculate the speed of the missile relative to the ground.

Draw a picture
Show your work
a) \qquad
\qquad
\qquad
\qquad

Chapter 1 Linear Motion

4. A rocket in outer space is moving at a speed of $1.25 \mathrm{~km} / \mathrm{s}$ relative to a stationary observer. The captain fires the engine and hot gases are expelled out of the rear of the rocket at a speed of $2.75 \mathrm{~km} / \mathrm{s}$ relative to the rocket. Calculate the speed of the gases relative to an observer.

Draw a picture
Show your work

5. Two motorboats approach each other along a straight-line course. Boat \mathbf{A} is headed north at $15 \mathrm{~km} / \mathrm{h}$. Boat \mathbf{B} is headed south at $24 \mathrm{~km} / \mathrm{h}$. What is the velocity of boat \mathbf{A} as seen by the skipper on boat \mathbf{B} in km / h ?

Draw a picture
Show your work
a)

6. From the pervious problem, if at time $t=0$ the two boats are 3 km apart, calculate how long before the two boats meet in hours and then minuets.

Draw a picture
Show your work

a) \qquad b)

\qquad
\qquad
\qquad

Chapter 1 Linear Motion

7. Two friends see each other when they are 200 m apart and start running toward each other. One runs at $8 \mathrm{~m} / \mathrm{s}$, the other at $12 \mathrm{~m} / \mathrm{s}$. Calculate how long before they meet.

Draw a picture
 Show your work

a) \qquad \longleftarrow units
b) \qquad \longleftarrow units 8. From the previous problem, calculate how far each friend runs before they meet. Draw a picture
a)

b)

\qquad
\qquad Date \qquad
Chapter 1 Linear Motion

